Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(2)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36676373

RESUMO

Titanium dioxide (TiO2) photocatalysis can harness the energy from sunlight, providing a solution to many green- and energy-related problems. In this study, we aimed to produce Cu doped TiO2 (Cu-TiO2) structures at a low temperature (~70 °C) under atmospheric pressure based on liquid phase deposition. The products prepared with Cu nitrate exhibited anatase-phase TiO2 with the presence of Cu, and the particles showed a waxberry-like structure. Changing the Cu nitrate concentration allowed control of the atomic concentration; we confirmed ~1.3 atm.% of Cu ions in the product when we applied 10 mM in the precursor solution. By doping Cu, the light absorption edge shifted to 440 nm (~2.9 eV), and we proved the photocatalytic reaction through action spectral measurement. We observed the decomposition of acetaldehyde into CO2 on Cu-TiO2 photocatalysts, which produced optimized improvements in photocatalytic activity at Cu dopant levels between 0.2 and 0.4 atm.%. This study demonstrates that the liquid phase deposition technique can be used for doping metallic ions into TiO2, which shows promise for preparing novel and unique nanomaterials as visible light photocatalysts.

2.
Materials (Basel) ; 15(22)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36431587

RESUMO

So far, poly(L-lactic acid), PLLA nanosheets proved to be promising for wound healing. Such biodegradable materials are easy to prepare, bio-friendly, cost-effective, simple to apply and were shown to protect burn wounds and facilitate their healing. At the same time, certain metal ions are known to be essential for wound healing, which is why this study was motivated by the idea of incorporating PLLA nanosheets with Zn2+ ion containing nanoparticles. Upon being applied on wound, such polymer nanosheets should release Zn2+ ions, which is expected to improve wound healing. The work thus focused on preparing PLLA nanosheets embedded with several kinds of Zn-containing nanoparticles, their characterization and ion-release behavior. ZnCl2 and ZnO nanoparticles were chosen because of their different solubility in water, with the intention to see the dynamics of their Zn2+ ion release in liquid medium with pH around 7.4. Interestingly, the prepared PLLA nanosheets demonstrated quit similar ion release rates, reaching the maximum concentration after about 10 h. This finding implies that such polymer materials can be promising as they are expected to release ions within several hours after their application on skin.

3.
J Environ Manage ; 255: 109890, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31790869

RESUMO

Water treatment plants generate vast amounts of sludge and its disposal is one of the most expensive and environmentally problematic challenges worldwide. As sludge from water treatment plants contains a considerable amount of titanium, both can create serious environmental concerns. In this study, the potential to recover titanium from drinking water treatment residue was explored through acid leaching technique. Statistical design for the optimization of titanium recovery was proposed using response surface methodology (RSM) based on a five-level central composite design (CCD). Three independent variables were investigated, namely the acid concentration (3 M-7 M), temperature (40 °C - 80 °C) and solid/liquid ratio (0.005-0.02 g/mL). According to the analysis of variance (ANOVA), the p-value (<0.0001) indicated the designed model was highly significant. Optimization using RSM gave the best fit between validated and predicted data as elucidated by the coefficient of determination with R2 values of 0.9965. However, acid concentration and solid/liquid ratio showed an initial increase in titanium recovery followed by recovery reduction with increasing concentration and ratio. Quadratic RSM predicted the maximum recovery of titanium to be 67.73% at optimal conditions of 5.5 M acid concentration, at a temperature of 62 °C with a solid/liquid ratio of 0.01 g/mL. The verification experiments gave an average of 66.23% recovery of titanium, thus indicating that the successfully developed model to predict the response. This process development has significant importance to reduce the cost of waste disposal, environmental protection, and recovery of economically valuable products.


Assuntos
Eliminação de Resíduos , Purificação da Água , Esgotos , Temperatura , Titânio
4.
Nanomaterials (Basel) ; 9(10)2019 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-31547003

RESUMO

We demonstrate a multi-purpose plasmonic sensor based on a nanovoid array fabricated via inexpensive and highly-reproducible direct femtosecond laser patterning of thin glass-supported Au films. The proposed nanovoid array exhibits near-IR surface plasmon (SP) resonances, which can be excited under normal incidence and optimised for specific applications by tailoring the array periodicity, as well as the nanovoid geometric shape. The fabricated SP sensor offers competitive sensitivity of ≈ 1600 nm/RIU at a figure of merit of 12 in bulk refractive index tests, as well as allows for identification of gases and ultra-thin analyte layers, making the sensor particularly useful for common bioassay experiments. Moreover, isolated nanovoids support strong electromagnetic field enhancement at lattice SP resonance wavelength, allowing for label-free molecular identification via surface-enhanced vibration spectroscopy.

5.
Phys Chem Chem Phys ; 18(34): 23628-37, 2016 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-27507010

RESUMO

ZnO nanomaterials with controlled size, shape and surface chemistry are required for applications in diverse areas, such as optoelectronics, photocatalysis, biomedicine and so on. Here, we report on ZnO nanostructures with rod-like and spherical shapes prepared via laser ablation in liquid using a laser with millisecond-long pulses. By changing laser parameters (such as pulse width and peak power), the size or aspect ratio of such nanostructures could be tuned. The surface chemistry and defects of the products were also strongly affected by applied laser conditions. The preparation of different structures is explained by the intense heating of liquid media caused by millisecond-long pulses and secondary irradiation of already-formed nanostructures.

6.
Opt Express ; 19(13): 12375-83, 2011 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-21716475

RESUMO

Biological applications where nanoparticles are used in a cell environment with laser irradiation are rapidly emerging. Investigation of the localized heating effect due to the laser irradiation on the particle is required to preclude unintended thermal effects. While bulk temperature rise can be determined using macroscale measurement methods, observation of the actual temperature within the nanoscale domain around the particle is difficult and here we propose a method to measure the local temperature around a single gold nanoparticle in liquid, using white light scattering spectroscopy. Using 40-nm-diameter gold nanoparticles coated with thermo-responsive polymer, we monitored the localized heating effect through the plasmon peak shift. The shift occurs due to the temperature-dependent refractive index change in surrounding polymer medium. The results indicate that the particle experiences a temperature rise of around 10 degrees Celsius when irradiated with tightly focused irradiation of ~1 mW at 532 nm.


Assuntos
Ouro/química , Temperatura Alta , Lasers , Nanopartículas , Nanotecnologia/métodos , Acrilamidas/química , Resinas Acrílicas , Biologia Celular/instrumentação , Desenho de Equipamento , Luz , Microscopia/instrumentação , Microscopia/métodos , Modelos Teóricos , Polímeros/química , Refratometria/instrumentação , Refratometria/métodos , Espalhamento de Radiação , Ressonância de Plasmônio de Superfície/instrumentação , Ressonância de Plasmônio de Superfície/métodos , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...